CERTS Microgrid Test Bed

Phase III Activities

Role of Microgrids in Facilitating Integration of Distributed Renewable Electricity Sources

Joe Eto
Lawrence Berkeley National Lab

Impacts and Benefits

Microgrids can enhance the values that DER offer:

Customer benefits include: bill savings, price certainty, reliability (including power quality), independence

Grid benefits include: a well-behaved electrical "citizen"

Societal benefits include: more resilient local energy infrastructure, possibly also environmental benefits

The CERTS Microgrid Project is recognized internationally as one of the leading microgrid R&D activities

Microgrids vs. CERTS Microgrids

"A **microgrid** is a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode " Microgrid Exchange Group. October 2010

Distinguishing features of the **CERTS Microgrid Concept**

- Seamless islanding and reconnection via single PCC
- Peer-to-peer, autonomous coordination among micro-sources (w/o high bandwidth communications)
- Plug-and-play no custom engineering
- Energy manager on arbitrary platform

Distinguishing features of the **CERTS Microgrid** *Test Bed Demonstration*

- Small sources (<100 kW each)
- No stand-alone storage (yet)
- No power flow onto the grid

CERTS Microgrid R&D Timeline

DOE Transmission Reliability Program – 1999-2002

Development of the original CERTS Microgrid concept Simulation and bench-scale testing Assessment of potential test bed sites Creation of enabling software tools (DER-CAM, mu-Grid)

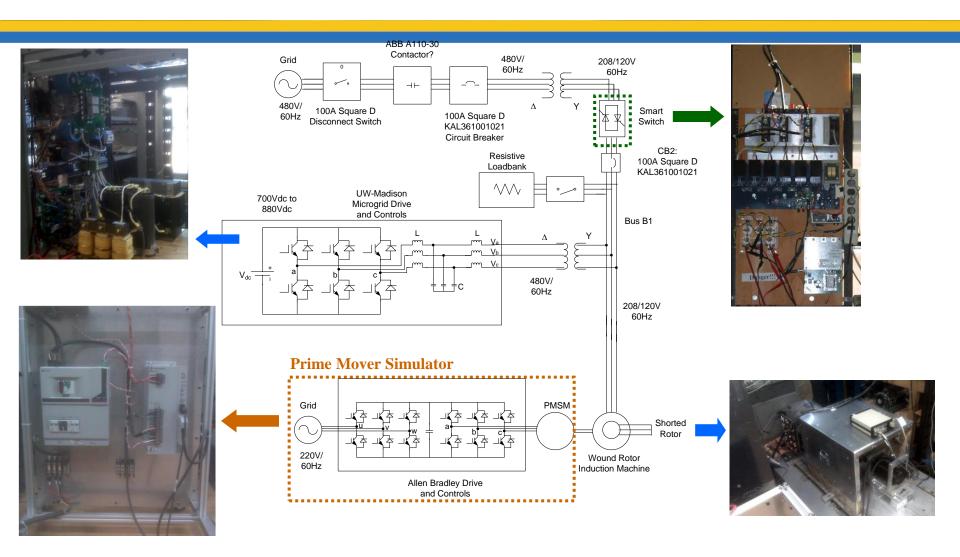
CEC PIER Energy Systems Integration Program — 2001-2006 Construction of AEP CERTS Microgrid test bed Completion of proof-of-concept CERTS Microgrid tests

DOE Renewables and Distribution System Integration Program – 2006-2010

Value and technology assessments to enhance the business case

DOE Smart Grid R&D Program — 2010-present Integration of storage and variable renewable generation

Technical Approach for Phase III


GENERALIZED TECHNICAL APPROACH

Analysis -> Detailed Simulation -> Bench-Scale Testing -> Prototype Specification -> Factory/Field Acceptance Testing of Prototypes -> Component and Full System Tests at AEP CERTS Microgrid Test Bed


KEY ELEMENTS OF TECHNICAL APPROACH FOR PHASE III

- Mechanical switch Install mechanical switch; repeat tests conducted with static switch
- Synchronous generator Acquire a synchronous generator; implement CERTS control algorithms in governor controls; conduct component and system tests at AEP
- Energy management Build an interface between AEP test bed and DER-CAM; use information from DER-CAM to support intelligent load-shedding
- Intelligent load shedding Install under-frequency relays with adjustable settings for amount of load shed, frequency trip points, and delay times; conduct system tests at AEP
- Storage Install a conventional storage system (lead-acid batteries); implement CERTS control algorithms; conduct component and system tests at AEP
- PV Acquire a PV emulator; implement CERTS control algorithms; conduct component and system tests at AEP

Bench-Scale Test Bed at UW

AEP/CERTS Microgrid Test Bed

Interactions & Collaborations

The CERTS Microgrid Project Team consists of:

Lawrence Berkeley National Laboratory
University of Wisconsin
American Electric Power Company
Sandia National Laboratories

The research partners currently include:

Tecogen
The Switch (inverter manufacturer)
Woodward/PowerSecure

Project Team members are involved in a number complementary activities SMUD microgrid field demonstration Chevron microgrid field demonstration at Santa Rita Jail

Maxwell Air Force Base microgrid demonstration

International Microgrid Symposium

In addition the project team is in discussions with a wide variety of potential field demonstration partners and microgrid equipment manufacturers

Technology Transfer, Collaborations, and Partnerships

Visitors to AEP Dolan Test Laboratory since 2009

Hawaiian Electric + Texas A&M
Raytheon Microgrid
Ohio House Committee on Alternate Energy
KEMA + CPFL (Brazil)
Tokyo Electric
UCAlug OpenSG - 80 utility members
International Microgrid Consortium tour group
State Grid of China
Ohio Green Energy Open House
Tokyo Electric
Eisenhower Fellows
Arts Impact Middle School

Consert EMS Tour

Battelle RTP Team

Energy Conversion Devices

HD Supply Tour

Kyushu Electric and Hitachi
GE Energy
Cooper Power Systems
Energy Conversion Devices + Ovonics
Rexorce Waste Heat Recovery
Panasonic Home Energy Manager Team
Chevron
EPRI Intelligrid meeting - 50 members from
various utilities
Ohio State Student Group
AEP Coop Students
University of Michigan Group
Columbus State University
Chung Yuan Christian University
Ohio Secretary of State

Contact Information

Joe Eto, PI Lawrence Berkeley National Laboratory 1 Cyclotron Rd. MS 90-4000 Berkeley CA 94720 (510) 486-7284 jheto@lbl.gov